

SYNERGISTIC ENGINEERING
ENVIRONMENT BUILD II

DEVELOPER GUIDE

Prepared by

Doug Murphy

Analytical Mechanics Associates

Hampton, VA

Revision G
AMA Report No.04-12

NASA Prime Contract No.L71131D
AMA Task 50

DATE: 6/30/2004

SEE Developer Guide

2

TABLE OF CONTENTS

1 INTRODUCTION .. 6
1.1 Identification of Document ... 6
1.2 Scope of Document... 6
1.3 Purpose and Objectives of Document... 6
1.4 Document Status and Schedule... 7
1.5 Document Organization .. 8

2 RELATED DOCUMENTATION .. 8
2.1 Applicable Documents.. 8
2.2 Information Documents .. 9
2.3 On-Line Resources.. 9

3 MOTIVATION AND GOALS... 10
3.1 Background ... 10
3.2 SEE Build II.. 10
3.3 Requirements .. 11

4 ARCHITECTURAL DESIGN DESCRIPTION... 12
4.1 Tools ... 12
4.2 Gizmo 3D.. 12
4.3 QT ... 13
4.4 Functional Decomposition .. 13
4.5 The Event Loop... 14
4.6 SEE Objects .. 16
4.7 Hierarchies .. 17
4.8 Solar System Objects .. 20
4.9 Dynamics Models and Paths... 22

4.9.1 Dynamics Model Class: KeplerBody... 24
4.9.2 Dynamics Model Class: KeplerNewton... 26
4.9.3 Dynamics Model Class: TleSgp4... 30
4.9.4 Path Rendering.. 32

4.10 The Orrery... 33
4.10.1 Dynamics Model Class: Moon.. 33

4.11 Crafts... 35
4.12 Inertia Calculations in the SEE... 39
4.13 Joint Models.. 46
4.14 Visiting Vehicles... 47
4.15 Collision Detection ... 47
4.16 Cameras, Rendering Windows, and Navigation ... 48
4.17 The Simulation Time System.. 50
4.18 Building the Mission... 52
4.19 Bookmarks .. 55

SEE Developer Guide

3

4.20 Analysis Tools .. 55
4.20.1 Area Report ... 57

4.21 Jet Plume Visualization... 58
4.22 Plotting.. 59
4.23 Macros... 59
4.24 Movie Capture .. 61
4.25 Online Help... 62

4.25.1 SEE FILE SYSTEM ... 63
5 VERIFICATION... 64

5.1 Test Case 1.. 64
5.2 Test Case 2.. 66
5.3 Test Case 3:... 68

6 ABBREVIATIONS AND ACRONYMS... 81
7 NOTES.. 82
8 APPENDIX A: SEE DIRECTORY STRUCTURE .. 83
9 APPENDIX B: ANNOTED DDEX FILE ... 85

SEE Developer Guide

4

LIST OF FIGURES

Figure 1: SEE Event Loop ... 15
Figure 2: SEE Graphical Object and Reference Frame Hierarchy 16
Figure 3: SEE Object Hierarchy ... 17
Figure 4: The Scene Graph ... 18
Figure 5: The Rf Hierarchy... 19
Figure 6: SolarSystem Class Inheritance ... 21
Figure 7: Classes Craft and Dynamics Model .. 21
Figure 8: Maneuver classes.. 23
Figure 9: Maximum Error introduced into object position by Keplerbody approximation.

... 25
Figure 10. The real relationship between E and M as compared to Battin's approximation

for initial guess.. 27
Figure 11. Comparison of the maximum number of iterations required for convergence

when using Battin's approximation as an initial guess versus using π...................... 28
Figure 12. Total iteration steps required for convergence per orbit for Modified Battin

versus using π.. 29
Figure 13: Orrery Class Structure .. 34
Figure 14: ISS Rigid Body Diagram (DAC8).. 36
Figure 15: SEE Craft Classes... 37
Figure 16: Craft Objects and Reference Frames.. 38
Figure 17: Rendering and Navigation Classes... 49
Figure 18: Preparing the Simulation Time... 51
Figure 19: Macro Classes... 60
Figure 20. Comparison of Earth Position from JPL Horizons and SEE for the years 2000-

2040... 69
Figure 21. Comparison of Earth Velocity from JPL Horizons and SEE for the years

2000-2040 ... 69
Figure 22: Comparison of Moon Position from JPL Horizons and SEE for the years 2000-

2040... 70
Figure 23: Comparison of Moon Velocity from JPL Horizons and SEE for the years

2000-2040 ... 70
Figure 24: Comparison of Mercury Position from JPL Horizons and SEE for the years

2000-2040 ... 71
Figure 25: Comparison of Mercury Velocity from JPL Horizons and SEE for the years

2000-2040 ... 71
Figure 26: Comparison of Venus Position from JPL Horizons and SEE for the years

2000-2040 ... 72
Figure 27: Comparison of Venus Velocity from JPL Horizons and SEE for the years

2000-2040 ... 72
Figure 28: Comparison of Mars Position from JPL Horizons and SEE for the years 2000-

2040... 73

SEE Developer Guide

5

Figure 29: Comparison of Mars Velocity from JPL Horizons and SEE for the years 2000-
2040... 73

Figure 30: Comparison of Jupiter Position from JPL Horizons and SEE for the years
2000-2025 ... 74

Figure 31: Comparison of Jupiter Velocity from JPL Horizons and SEE for the years
2000-2025 ... 74

Figure 32: Comparison of Saturn Position from JPL Horizons and SEE for the years
2000-2025 ... 75

Figure 33: Comparison of Saturn Velocity from JPL Horizons and SEE for the years
2000-2025 ... 75

Figure 34: Comparison of Uranus Position from JPL Horizons and SEE for the years
2000-2025 ... 76

Figure 35: Comparison of Uranus Velocity from JPL Horizons and SEE for the years
2000-2025 ... 76

Figure 36: Comparison of Neptune Position from JPL Horizons and SEE for the years
2000-2040 ... 77

Figure 37: Comparison of Neptune Velocity from JPL Horizons and SEE for the years
2000-2040 ... 77

Figure 38: Comparison of Pluto Position from JPL Horizons and SEE for the years 2000-
2040... 78

Figure 39: Comparison of Pluto Velocity from JPL Horizons and SEE for the years 2000-
2040... 78

SEE Developer Guide

6

1 INTRODUCTION

1.1 Identification of Document

This is the Developer Guide for the Synergistic Engineering Environment (SEE) Build II
software. This guide and the SEE software was prepared by Analytical Mechanics
Associates, Hampton VA. For inquiries please contact Doug Murphy at Doug@ama-
inc.com.

1.2 Scope of Document

This revision of the Developer Guide is applicable to release 1.3 of the SEE Build II
software, released June 2004.

1.3 Purpose and Objectives of Document

This document is intended to provide background on the SEE Build II software to aid
future developers in planning upgrades, adding new features and integrating new analysis
tools. As of this release of the SEE, information about using this software for the Comet
and Asteroid Protection System (CAPS) project is available in a separate report. Section
2 contains full cites for applicable documents and resources, including the SEE User
Guide and the SEE CAPS Module Guide.

SEE Developer Guide

7

1.4 Document Status and Schedule

This is revision G of the Developer Guide. Revisions are planned for each future
software release in which substantial architecture changes or additions are made.

Revision Date Change Log

 - March 2002 Initial Release
 A July 2002 Added discussion of Solar System Object

inheritance hierarchy, scene graph building and
classes for interfacing with dynamics models.
Included references to the SEE CAPS Module
Guide.

 B December 2002 Added description of solar system initialization,
mission wizard, SEE object libraries, collision
detection and image capture.

 C February 2003 Added description of plotting, analysis tools,
Bookmarks. Plus misc. revisions.

 D April 2003 Added descriptions of movie capture, macros,
 “New Craft” wizard, jet plume
 visualization.
 E August 2003 Simulation time description updated. Qt Assistant

description added. Dynamics model section
revised. DDEX file format diagram revised.

 F December 2003 Added description of joint dynamics models and
sun-tracking system. SEE file system section
added.

 G June 2004 Added sections on inertia calculations, dynamics
model for NORAD two-line element sets, path
rendering.

SEE Developer Guide

8

1.5 Document Organization

The following fonts are used to highlight special terms:

courier new Program names, C++ class names, code fragments
or variable names.

italic Terms with specific connotation in the SEE context.

2 RELATED DOCUMENTATION

2.1 Applicable Documents

These documents are referenced herein or are directly applicable to the SEE architecture:

1. Synergistic Engineering Environment Build II, Guide to the Comet and Asteroid

Protection System (CAPS) Module, Analytical Mechanics Associates Inc.,
Hampton VA, July 2002.

2. Synergistic Engineering Environment Build II Users Guide, Analytical

Mechanics Associates Inc., Hampton VA, June 2004.

3. On-Orbit Assembly, Modeling, and Mass Properties Data Book, Volume I,

International Space Station Program, DAC8, Revision Sequence E, NASA
Johnson Space Center, August 1999.

4. Method for Propagating the Orbital Elements of the Solar System for the

Synergistic Engineering Environment, AMA Report No. 01-28, Analytical
Mechanics Associates Inc., Hampton VA, 2001.

5. The Astronomical Almanac For the Year 2003, Nautical Almanac Office, United

States Naval Observatory, U.S. Government Printing Office, Washington, D.C.,
2002.

6. Bate, R., Mueller, D. and White, J., Fundamentals of Astrodynamics, Dover

Publications, New York, 1971.

7. Battin, R.H, An Introduction to the Mathematics and Methods of Astrodynamics,

Revised Edition, American Institute of Aeronautics and Astronautics, Inc.,
Virginia, 1999, pp. 194.

8. SEE-ARCD Integration Report, , Analytical Mechanics Associates Inc., Hampton

VA, June 2004.

SEE Developer Guide

9

2.2 Information Documents

The OpenGL Programming Guide, Third Edition, Mason Woo, Jackie Neider, Tom
Davis, Dave Shreiner, OpenGL Architecture Review Board, Addison-Wesley, Reading,
MA 1999.

International Space Station Synergistic Engineering Environment Version Beta 0.60
Users Guide, Analytical Mechanics Associates Inc., Hampton VA, December 2001.

Architectural Design Description of the International Space Station Synergistic
Engineering Environment, Analytical Mechanics Associates Inc., Hampton VA,
December 2001.

2.3 On-Line Resources

These on-line resources are used in the development and configuration management of
the SEE project:

http://centauri.larc.nasa.gov/see

The SEE public website. Provides a summary of the current and planned
capabilities of the SEE. Links to the see developer home page where registered
users can log-in and submit bug reports and feature requests.

ftp://griffin.larc.nasa.gov/usr/people/medusa3/shield/cvsroot/seebuild2

The CVS repository for the SEE source code.

http://centauri.larc.nasa.gov/see

SEE Developer Guide

10

3 MOTIVATION AND GOALS

3.1 Background

Build I of the SEE, known previously as the ISS SEE, was originally commissioned to
demonstrate prospective features of a new engineering tool for visualizing the combined
results of analysis programs used for work on the International Space Station. The final
release of the ISS SEE Build I was completed in December 2001. Build II is a follow-on
to that project, and aims to continue and further the capabilities of Build I with the focus
expanded to include the modeling and visualization of solar system exploration scenarios
in addition to operations of the ISS.

Build I of the SEE made use of the MuSE 3D commercial application programming
interface (API) for management of the graphical scene. Support for the MuSE software
was discontinued by the vendor at the end of 2001. By that time it was also becoming
clear that the SEE Build I software architecture had reached a point where the addition of
new requirements would require significant changes to the core code. In order to
continue to support the continued development of the SEE, a complete re-write of the
code was undertaken for Build II.

3.2 SEE Build II

The goal of the SEE Build II project is to design a space mission simulator with emphasis
on providing an interactive three-dimensional virtual environment in which to view the
results. Experience with the Build I project showed that the ability to examine the
geometry of the vehicles and solar system bodies moving in the scene, as prescribed by
the results of analysis tools, was beneficial both in understanding the scenario and
communicating the results to others1.

As with Build I, a major design goal of Build II is to include the capability to allow the
user to combine a variety of data sets into a single environment. In Build I this data
included spacecraft positions and attitude, joint articulation data, thruster jet firing
histories, robot arm movements and other properties of spacecrafts. The planets and
moons of the solar system were simulated exclusively by an engine internal to the SEE
program. By the end of the Build I development, work on features for importing planet
and moon position and orientation data was just beginning. The design of Build II will
emphasize the capability to select internal or external data sources for any object in the
scene2.

Where possible and efficient, the SEE will aim to provide methods that interface directly
with external analysis tools. This type of interface would allow the user, for example, to
identify a spacecraft currently being viewed in the SEE environment for a new dynamics
analysis. The SEE program would then export the properties of the selected spacecraft in
a format compatible with the target analysis tool, run the analysis, and import the results.

SEE Developer Guide

11

3.3 Requirements

The specific requirements for features desired in the Build II SEE were based on those
for Build I. Features that were seldom used on Build I have been de-emphasized or
scheduled for late development on Build II, so that more commonly used features will get
priority. The requirements for new or refined capabilities have come from team leaders
and team members in the Revolutionary Aerospace Systems Concepts (RASC) Activity
at Langley Research Center (LaRC), and also from members of the International Space
Station (ISS) Vehicle Integrated Performance and Resources (VIPER) team at Johnson
Space Center. RASC projects that have or intend to use the SEE include the Hybrid
Propellant Module and the Comet and Asteroid Protection System (CAPS). The SEE
CAPS Module Guide contains detailed requirements for CAPS features of the SEE.
Requirements from the VIPER team focus on the systems engineering aspects of the ISS.

The top-level requirements for the system include the capability to run on Windows PCs,
as well as the Linux and IRIX operating systems. The software will serve primarily as a
space mission visualization tool but will be extensible to allow developers to integrate
analysis algorithms as required by the users.

SEE Developer Guide

12

4 ARCHITECTURAL DESIGN DESCRIPTION

4.1 Tools

The SEE project is comprised of several related tools. The SEE executable is the
primary application. Support applications include the Dynamics Data Extraction
Program (DDEX) and the Articulated Rigid Body Control Dynamics Program (ARCD).
DDEX is a tool used for converting CAD databases to SEE compatible format, and
consists of a C++ program and CAD scripts. ARCD is a Fortran program developed by
NASA and is used for evaluating the dynamics of a spacecraft in Earth orbit. Most of the
functionality of the SEE program is independent of these support tools. They are not
required to be part of an SEE distribution to a particular customer.

The SEE main program source code is object-oriented and written in C++. Several third
party libraries are utilized. The 3D graphics API is Gizmo 3D. The window library is
QT, including the Qwt extension for plotting features. Collision detection utilizes the
PQP libraries. Gizmo and QT are briefly described below. PQP is discussed further in
section 4.15.

4.2 Gizmo 3D

The decision to search for an existing high-level graphics API to replace MuSE, rather
than to develop a custom library, was motivated by the development schedule. It was
determined that most of the graphics requirements of the SEE were likely to be found in
an existing API, and that the time invested in learning to use that library would yield a
better return than developing and testing a custom solution. The desired requirements for
the graphics API included Windows, IRIX, and Linux platform compatibility, fast
rendering algorithms capable of supporting up to 500,000 polygons at interactive rates,
availability of double precision support for transformation matrices, and free or
affordable run-time licenses. Support for double precision appeared to be the limiting
factor for most of the prospective choices.
Gizmo 3D from Tooltech Software met the list of requirements and passed preliminary
performance evaluations, including a small program designed to stress the frame rate by
using high polygon-count models. Gizmo is available for Windows, IRIX and Linux, and
contains built-in routines for loading popular tessellated model formats such as Discrete’s
3D-Studio and SGI’s Performer. The Gizmo API is built upon OpenGL and adds
functions for building a scene graph using node objects. The scene graph aspects of the
library appear to be similar to the functions provided by Performer and Inventor. A
drawback of the Gizmo API as of this writing is a lack of documentation.

SEE Developer Guide

13

4.3 QT

For the same reason that an existing 3D API was sought, it was decided to use an
available software package for creating cross-platform graphical user interfaces. QT
from Trolltech software was selected to replace Tcl/TK – the library used for SEE Build
I. The QT libraries are written in C++, thus the QT function calls can be integrated
directly with the SEE source code. This advantage allows the GUI signals to be
communicated to the SEE functions without the need for additional code to handle inter-
process communications3. QT has a significant user-base, is available for the three
platforms of interest, and comes with a visual GUI building environment for automatic
code generation. While Gizmo itself provides some limited interaction tools to allow the
developer to detect keyboard and mouse events, it contains no features for creating the
familiar graphical “widgets” (e.g. scroll bars and push buttons). The authors of Gizmo
have recently identified QT as their primary API for the development of GUI interaction
with the Gizmo system.

The Qwt (QT Widgets for Technical Applications) library is an open source project that
adds plotting routines and other functions to QT. The plotting capabilities of the SEE
make use of this library. The Qwt project web page is at
http://sourceforge.net/projects/qwt.

4.4 Functional Decomposition

The routines and data files comprising the SEE can be thought of as belonging in one of
the following function categories: user interface, visualization, simulation tools. One of
the design goals for the project is to keep the source code divided into modules, based on
their function, using these categories. This modularization is intended to aid in making
the code extensible, reducing the file dependencies required for compilation, and
allowing concurrent development. Appendix A shows the top-level directories for the
files in the project with descriptive annotations. The source code for the main SEE
executable is divided into subdirectories one level deep. With the exception of utilities
such as the math libraries and the initialization codes in main, the sources in each of the
subdirectories should support only one of the function categories.

SEE Developer Guide

14

The user interface category is comprised largely of QT objects (referred to as widgets),
which includes the application main window, the dialog boxes, and familiar graphical
user interface widgets. The software architecture will support the custom configuration
of the GUI, and allow the configuration to be saved separately for each user.

The Visualization category includes routines for building the graphical representations of
the solar system model, spacecrafts, ground stations, asteroids, comets and other rendered
items in the scene. For each of these items, an instantiated object of the appropriate C++
class is added to an SEE object hierarchy. Each SEE object in turn has a representation
as a gzNode object in the Gizmo scene graph.

The SEE graphical objects are organized by type (Figure 2), with each type belonging to
a manager class responsible for instantiating and updating the objects. The program
execution proceeds through an event loop created by the system manager; a high level
class responsible for the program flow of control. In each pass through the event loop
the object managers update the position, orientation and other dynamic properties of all
their child objects.

4.5 The Event Loop

The SEE program runs in an event loop as depicted in Figure 1. The initialization phase
occurs at application startup. Part of the initialization phase includes instantiation of a
QT timer object. The function of this timer object is to send out a signal that all user-
request (e.g. keyboard and mouse inputs) have been received and processed by their
respective signal handlers. When this signal is received by the system manager, the
update, draw, and respond routines are called in order4.

SEE Developer Guide

15

Figure 1: SEE Event Loop

INITIALIZATION

The startup state of the application, including which objects are present
in the scene and the user interface preferences, are read from
configuration data files.

UPDATE

The current simulation time is updated. The position, orientation and
other parameters in the scene are calculated.

DRAW

The rendering phase. The scene is culled and all visible objects are
scan converted

RESPOND

User feedback events are processed.

exit application? Done
Y

N

SEE Developer Guide

16

4.6 SEE Objects

Figure 2 shows the arrangement of the top level classes used for SEE objects. Classes
Planet and Craft are derived from class SeeObject. Class SeeObject has as a member
seeType so that the child objects may be easily identified.

Figure 2: SEE Graphical Object and Reference Frame Hierarchy

SEE Developer Guide

17

Class Hierarchy is used to keep track of the parent-child relationships of the SEE objects
and the reference frames to which they are attached. The distinction between the objects
and their reference frames is important since the hierarchy may be different for each. The
hierarchy of SeeObjects is designed to facilitate the way we are likely to think about the
organization of the scene and is used to build the selection lists for the GUI. The
hierarchy of RefFrame objects reflects the structure of the transformation matrices in the
scene graph. To illustrate, if a user creates a new earth-orbiting satellite using a
dynamics data set in a heliocentric reference frame, the SeeObject created for the
satellite will have the Planet object “Earth” as a parent. However, since the dynamics
data that describes the position and orientation of that satellite is relative to the Sun, the
design reference frame of that satellite will have the inertial or Sun frame as a parent.

4.7 Hierarchies

There are three tree-structured hierarchies maintained within the SEE: the SeeObject
hierarchy, the Rf hierarchy, and the scene graph. The SeeObject hierarchy maintains the
inheritance structure of the all SeeObjects, primarily for the user interface purposes. For
instance, since the Earth orbits the Sun, one would set the Earth as a child of the Sun.
Likewise, a craft orbiting a planet would consider that planet as its parent (even if the
data describing the orbit were heliocentric coordinates).

Figure 3: SEE Object Hierarchy

The scene graph is a structure of Gizmo3D objects, called nodes. A node could be
anything from a positional transform to actual geometry. Gizmo3D traverses the scene
graph a number of times during each rendering cycle. Except for camera position, all
rendering information is stored within the scene graph.

SEE Developer Guide

18

Figure 4: The Scene Graph

SEE Developer Guide

19

Figure 5: The Rf Hierarchy

SEE Developer Guide

20

The Rf hierarchy is a subtree of the scene graph, containing only the transforms. The Rf
object is, in fact, derived from the gzTransform node. The Rf hierarchy is used to locate
the positions of objects for either analytical or graphical purposes. For instance, a line of
sight from the Earth to Mars requires the heliocentric positions of each. And tethering of
cameras to objects requires their graphical positions (possibly different from the
heliocentric position due to orbit scaling).

4.8 Solar System Objects

Real or physical objects are represented in the SEE by one of the subclasses of
SolarSystemObject (Figure 6). These objects are distinguished by the fact that they
must have mass properties, whereas other objects such as coordinate axes, vector arrows
and camera icons may have a graphical representation in the scene but do not have mass.
Class SolarSystemObject is abstract. Instantiated objects of the class will be of one of
the inherited types: SimpleObject, ArtificialObject, or NaturalObject. Class
SimpleObject is designed to represent either minor planets or crafts with no articulating
parts. Crafts of this type will not be able to change their orientation to support a given
flight mode. This class is intended to support the creation of a large number of objects
such as an asteroid field or a large constellation of satellites, whose orbit data will likely
be read from a data file or generated automatically rather than typed in via the GUI.
Class ArtificialObject encapsulates man-made objects such as satellites and space
stations that are likely to have named flight modes, design reference frames, articulating
parts and instruments. Currently the features to support flight modes and articulating
rigid bodies are all implemented in the Craft subclass. The current version of
ArtificialObject is actually a placeholder, which will be expanded in future SEE
revisions as necessary. Models for craft subsystems such as power, thermal and ACS
will interface with this class.
Class NaturalObject encapsulates features that support the simulation of planets,
moons and minor planets. The orientation of these objects will be constructed using
equatorial reference frames and spin axes or poles. Atmospheric and gravitational
models will interface with this class.

SEE Developer Guide

21

see_object

see_path
--see_path
SolarSystemObject

SimpleObject ArtificialObject NaturalObject

Figure 6: SolarSystem Class Inheritance

Figure 7: Classes Craft and Dynamics Model

DynamicsModel

KeplerBody

KeplerNewton

StockPlanet

CustomPlanet

GroundObject

TrajBody

SEE Developer Guide

22

4.9 Dynamics Models and Paths

All real objects being modeled in the SEE will have a path in space, and therefore must
be connected to a system that generates time dependent position data. Algorithms that
generate this data, and optionally orientation, velocity and acceleration data, are
encapsulated in class DynamicsModel. To create a SolarSystemObject that requires a
path through space, the SEE instantiates an appropriate DynamicsModel according to the
parameters provided by the user (e.g. a model that calculates position and velocity
according to Kepler’s equations may take a series of orbital elements as initialization
data). The DynamicsModel is used in conjunction with class see_path to ultimately
generate the splines that will be used to render the object trajectory. Class see_path is
used to provide a consistent interface between SolarSystemObjects and their paths. In
practice, the SolarSystemObject must be of type SimpleObject, Craft, or
NaturalObject, since assemblies and parts of crafts do not require independent paths.

Figure 7 shows the DynamicsModel classes and the relationship of class craft to
DynamicsModel. Classes derived from DynamicsModel all provide, at a minimum,
position versus time data relative to their parent SEE object in some form. Class
GroundObject will return latitude, longitude, and altitude versus time. To resolve the
heliocentric or planet-centric position of such an object, the SEE must also query the
planet on which the object is placed for it’s position and orientation data. Classes
KeplerBody and KeplerNewton provide two methods for positioning an object according
to Kepler’s laws. These methods are described further in sections 4.9.1 and 4.9.2. Class
TrajBody is designed to interface with a discrete set of position versus time data that
might be stored in a file. Classes StockPlanet and CustomPlanet are specifically
designed to support the placement and orientation of NaturalObjects. These classes are
used to interface with “black-box” solar system simulations that have a library of planets
and moons referenced by name. An example is the “Orrery”, the SEE internal solar
system simulator. Planets driven by the Orrery are instantiated with StockPlanet
dynamics models. At update time these objects query the Orrery for the planet position
and orientation by supplying only the planet (or moon) name and a simulation time.
Class CustomPlanet is a placeholder designed to allow planets to be created using the
same algorithms used in the Orrery but that have custom initialization data (e.g. an
approximated Earth model with zero inclination and eccentricity).

SEE Developer Guide

23

In every craft there will be a dynamics model which generates the position and another
dynamics model which generates the orientation. This orientation is generated by the
AttitudeManeuver dynamics model. In the future, additional dynamics models could be
implemented for a craft to control joint motions.

Attitude Maneuvers Architecture

The architecture of the AttitudeManeuver dynamics model supports multiple
maneuvers. This relationship is shown in Figure 8. The AttitudeManeuver class has a
std::map< SEEdate, Maneuver*> of Maneuver objects which are created for each of
the craft's maneuvers. When the craft goes through an update, the current simulation
time is sent to the AttitudeManeuver class. This simulation time is then checked against
the starting and ending times of the craft's maneuvers. If any of the maneuvers are
determine to be valid at this time, the calculation of the orientation matrix is computed in
the Maneuvers class. There are three types of maneuvers: Absolute, Relative, and
Constant Rotation. For Absolute maneuvers, the final orientation is specified with
respected to the craft's flight mode. The Maneuver class interpolates the orientation of
the craft as it updates during the specified time period. To accomplish this, the starting
and ending orientation matrices are converted to quaternions and spherical linear
interpolation is performed at each update. In the case of a Relative maneuver the only
difference is that the starting matrix used is the current orientation of the craft at the start
of the maneuver. The Relative maneuver is therefore just an offset of the craft's
orientation. For the constant rotation case the craft is rotated about one of the three
principal axes at a constant rate.

Figure 8: Maneuver classes

SEE Developer Guide

24

4.9.1 Dynamics Model Class: KeplerBody

The dynamics model class KeplerBody is used to implement the two-body model for
positioning an object in an elliptical or circular orbit about a primary body. It accepts the
classical orbit elements of an object (a, e, i, ω, Ω, M) and returns the position and
velocity of that object in the same reference frame to which the orbital elements were
referenced.

Limitations:
When calculating the true anomaly of the spacecraft for the current time from the value
of mean anomaly, this routine uses an approximation [Ref. 5, pp. E4] given by:

MeMeMeeM 3sin)12/13()2sin()4/5()sin()4/2(323 ++−+=ν [+…]

where ν is the true anomaly, M is the mean anomaly, and e is the orbit eccentricity. This
approximation becomes less and less accurate as the eccentricity increases from a value
of zero. It is very accurate for near circular orbits, and the error is zero for circular orbits.
The error is not cumulative over multiple orbits, it is rectified each ½ orbit. The
maximum error occurs somewhere between a true anomaly of 70 and 120 degrees and
then again between 250 and 300 degrees, but the approximation yields zero error for
values of M=ν=0 and M=ν=180.

Two error values were calculated for illustration. The maximum magnitude of the error
in true anomaly (difference between actual and calculated), and the resulting maximum
positional error of the object as a percent of the orbit semi-major axis. These error
magnitudes are illustrated in Figure 9.

SEE Developer Guide

25

Difference between the actual true anomaly and the 3 term
approximation from Mean Anomaly

0.0001

0.001

0.01

0.1

1

10

100

1000

0 0.2 0.4 0.6 0.8 1

Eccentricity of Orbit

Er
ro

r i
n

Tr
ue

 A
no

m
al

y
(d

eg
)

or
 P

os
iti

on
 a

s
a

%
 o

f S
em

i-
m

aj
or

 A
xi

s

Max error in true anomaly,
deg

Max error in position as % of
semi-major axis

Figure 9: Maximum Error introduced into object position by Keplerbody approximation.

Usage:

Keplerbody provides a very rapid and computationally non-intensive way to obtain the
position and velocity of an object given the orbital elements. It should only be used for
objects with low orbit eccentricity (probably < 0.15, depending on allowable error) where
speed of calculation is of primary concern, and absolute accuracy is secondary.

SEE Developer Guide

26

4.9.2 Dynamics Model Class: KeplerNewton

The Keplernewton dynamics routine in the SEE is to be used for elliptical and circular
orbits about a primary body. It accepts the classical orbit elements of an object (a, e, i, ω,
Ω, M) and returns the position and velocity of that object in the same reference frame to
which the orbital elements were referenced.

The solution technique is one in which the true anomaly of the object is calculated from
an iterative solution to Kepler's Equation:

)sin(EeEM −=

where M is the mean anomaly, E is the eccentric anomaly, and e is the eccentricity of the
orbit. The Newton iteration scheme used for solving for E given an initial guess at M is
well documented [Ref. 6, pp. 221], and entails making a guess for E, calculating M, and
then revising the guess for E based upon the result until convergence is achieved between
the known value of M and that from the equation above.

At the time of model review, the initial guess for the first value of E in the iteration
technique was taken from Battin [Ref. 7, pp. 194]:

)sin()sin(1
)sin(

MeM
MeME

++−
+=

where M and E are measured in radians. This approximation provides a very good
estimate for orbits with low eccentricity, or for all orbits where M is less than a value of
π. It was noticed, however that when M was between π and 2π for orbits with high
eccentricity the approximation became very poor as illustrated in Figure 10.

SEE Developer Guide

27

Comparison of Actual M vs. E to approximation used for
first value of E in Kepler-Newton

-6.28

-3.14

0.00

3.14

6.28

0.00 3.14 6.28

M, radians

E,
 ra

di
an

s
Actual e=0 Actual, e=0.5 Actual e=1
Approximation fo r E, e=0 Approximation fo r E, e=0.5 Approximation fo r E, e=0.9
Approximation fo r E, e=0.99

Figure 10. The real relationship between E and M as compared to Battin's approximation for initial guess.

This poor approximation actually led to a rapid increase in the number of iterations
required for convergence on a value of E when M was near 5.3 radians. Although the
typical Keplernewton solution should take 5-30 iterations to converge, for eccentricities
above 0.9 the number of iterations escalated to the tens of thousands.

The Newton iteration technique is known to converge for all values of eccentricity (e) for
an initial guess of E=π, but convergence can be slower than for an initial guess closer to
the real value of E. The number of iteration steps required to converge for each initial
guess approach was investigated. A Matlab script was created that performed the
convergence iteration for both initial guesses at each value of E from 0 to 2π, and for e
from 0 to 1. For each value of e, the maximum number of iterations required for any
single convergence was extracted, and is shown in Figure 11. The figure clearly
illustrates that for high eccentricity orbits (e > 0.9), that convergence is much more
quickly performed by using π as an initial guess.

SEE Developer Guide

28

Figure 11. Comparison of the maximum number of iterations required for convergence when using
Battin's approximation as an initial guess versus using π.

 It was also desired to know the approximate computational savings achieved by using
Battin's initial guess, when appropriate, as compared to simply using a value of π for the
initial guess in all scenarios. Therefore, a new logic was implemented, called modified
Battin, that simply used a starting guess of π if e was greater than 0.9, but would
otherwise use the Battin initial guess. The total number of iterations for convergence was
calculated for E every 0.005 radians between 0 and 2π (every 0.3 degrees, or ~1250
iterations/orbit) at each value of eccentricity between 0 and 1. The result in the total
number of iterations, and the number of iterations saved by using the modified Battin
technique is shown in Figure 12. The figure clearly shows that implementing a scheme to
utilize the Battin initial guess as much as possible can lead to significant saving in the
total number of iterations required per orbit.

SEE Developer Guide

29

The results above assume that M and E have values between 0 and 2π. If the object of
interest has traversed more than one complete orbits, factors of 2π should be removed
from M (using a modulus function) before these calculations are performed. Failure to
do so will lead to a large increase in the number of iterations needed for convergence.

Figure 12. Total iteration steps required for convergence per orbit for Modified Battin versus using π.

It should be noted that both the KeplerBody and KeplerNewton routines measure the
right ascension of the ascending node (Ω) from the inertial reference direction (as
opposed to the prime meridian of the primary body.) The SEE source code and
documentation may also refer to this quantity as the longitude of the ascending node.
Applications including STK may make a distinction between the two, in which the
longitude of the ascending node is referred to the prime meridian of the primary body
rather than the inertial reference direction.

SEE Developer Guide

30

4.9.3 Dynamics Model Class: TleSgp4

The SEE dynamics model TleSgp4 is used for propagating spacecraft orbits described
using the NORAD two-line elements sets (TLE) format. TleSgp4 is an interface class
between the SEE dynamics models and the library of routines provided publicly by
Michael F. Henry (http://www.zeptomoby.com/satellites/). The README file from the
Henry libraries is included below. Additional information on the NORAD TLEs can be
found at http://www.celestrak.com.

README file from the C++ NORAD SGP4/SDP4 Implementation by Michael F. Henry:
--

Documentation for C++ NORAD SGP4/SDP4 Implementation
Developed by Michael F. Henry
December, 2003

Copyright © 2003. All rights reserved.

The files in this package implement the SGP4 and SDP4 algorithms
described in the December, 1980 NORAD document "Space Track Report No.
3". The report provides FORTRAN IV implementations of each. These two
orbital models, one for "near-earth" objects and one for "deep space"
objects, are widely used in satellite tracking software and can produce
very accurate results when used with current NORAD two-line element
datum.

The original NORAD FORTRAN IV SGP4/SDP4 implementations were converted
to Pascal by Dr. TS Kelso in 1995. In 1996 these routines were ported
in a straight-forward manner to C++ by Varol Okan. The SGP4/SDP4
classes here were written by Michael F. Henry in 2002-03 and are a
modern C++ re-write of the work done by Okan. In addition to
introducing an object-oriented architecture, the last residues of the
original FORTRAN code (such as labels and gotos) were eradicated.

The project files were compiled using Microsoft Visual Studio 7.0. Any
compiler that supports the C++ Standard Template Library should work,
including Visual Studio 6.0. The project generates a single executable,
SxP4Test.exe, which calculates ECI position and velocity information
for the test element sets originally published in the NORAD
report. Also provided as an additional example is how to use the
classes to calculate the look angle from a location on the earth to a
satellite in orbit.

A brief description of important classes:

cTle This class encapsulates a single set of NORAD two line elements.

cEci This class encapsulates Earth-Centered Inertial coordinates and
velocity for a given moment in time.

cOrbit Given a cTle object, this class provides information about the
orbit of the described satellite, including inclination, perigee,
eccentricity, etc. Most importantly, it provides ECI
coordinates/velocity for the satellite.

http://www.celestrak.com/

SEE Developer Guide

31

CSite Describes a location on the earth. Given the ECI coordinates of
a satellite, this class can generate Azimuth/Elevation look angles to
the satellite.

cNoradBase, cNoradSGP4, cNoradSDP4 These classes implement the NORAD
SGP4/SDP4 algorithms. They are used by cOrbit to calculate the ECI
coordinates/velocity of its associated satellite.

For excellent information on the underlying physics of orbits, visible
satellite observations, current NORAD TLE data, and other related
material, see http://www.celestrak.com which is maintained by Dr. TS
Kelso.

Michael F. Henry
December, 2003
--

SEE Developer Guide

32

4.9.4 Path Rendering

The drawing of all orbit paths and trajectories in the SEE is done using straight line
segments. To achieve a smooth curve appearance, the length of the line segments is
automatically adjusted based on the distance from the path to the camera. A spline is
used to calculate intermediate points required to subdivide the segments (Figure 13). The
resulting path segments always pass through the original data points. In the case of a
discrete data set, the original points are those that exist in the discrete data file. In the
case of Kepler and other computer orbits, the original data points are those that were
computed by the get_graphics() function.

The spline function used to create intermediate data points utilizes velocity data when
available, or computes an estimated velocity when this data is not provided. Care should
be taken when attempting to draw a path using non-uniform time steps without providing
velocity data, as the resulting spline may not be a good fit for the path.

Figure 13: Path LOD Rendering

Low LOD path

camera

Far Camera Case

Near Camera Case

Original path data

Point added using
spline High LOD path

SEE Developer Guide

33

4.10 The Orrery

The SEE internal solar system simulator is referred to as the Orrery. This model may be
used in the case where the user does not have or does not wish to use position versus time
data generated by some external source. A list of planets and moons desired at
application start-up is maintained in a configuration file.

In most cases the Orrery uses the dynamics model KeplerBody to determine the position
and velocity of a planet or moon at a given time. An exception is the moon of Earth,
which uses a special routine for improved accuracy. Section 4.10.1 describes this moon
model.

The Orrery uses an application wide epoch and compares it to the current simulation time
to generate a time delta for the current pass of the event loop. This time delta is used for
calculating the position of the bodies along their orbits (e.g. true anomaly). The
application epoch is also maintained in a configuration data file, read at application
startup. Figure 14 shows a UML diagram of the classes comprising the Orrery.

4.10.1 Dynamics Model Class: Moon

Moon is a routine for determining the position and velocity of the Earth Moon (hereafter
known as Moon or the Moon). The position information is based upon the low-precision
formula for geocentric coordinates of the Moon, taken from the Astronomical Almanac,
(pp. D46 for the Year 2000, and pp. D22 for the Year 2003)

It is stated that the errors from this technique will "rarely exceed 0.3° in ecliptic longitude
(λ), 0.2° in ecliptic latitude (φ), and 0.2 Earth radii in distance (r)". The root-sum-square
absolute positional error from this technique should then be between 2800 km (using an
average moon orbit radius of 384,400 km) and 3400 km (using a maximum moon orbit
radius of 403,620 km). These values are based on an Earth radius of 6378 km, and make
small angle approximations for the positional error in ecliptic latitude and longitude.

The current moon dynamics model is still being reviewed. Preliminary documentation of
the accuracy of this model as implemented in the SEE is provided in section 5.

SEE Developer Guide

34

Figure 14: Orrery Class Structure

SEE Developer Guide

35

4.11 Crafts

A craft object in the SEE will normally be a man-made orbiting body such as a space
station, satellite, or telescope. A complex craft such as the ISS may contain a number of
features including articulating rigid bodies connected by joints (e.g. rotating solar panels),
instruments, antennas, cameras, robots and visiting vehicles. The initial beta release of
the SEE aims to model the spacecraft geometry and mass properties.

At a minimum an SEE craft requires a path in space over which it travels, and a
geometric model for rendering. User-interface features will allow the user to generate
orbits or trajectories by supplying orbital elements, position versus time data, and
eventually telemetry streams. Geometric models will be loaded from files or assigned
default primitives (sphere, cube) if the user desires. The SEE will include a library of ISS
configurations based on the I-DEAS model files provided by the Systems Engineering,
Modeling and Data Analysis (SEMDA) Laboratory at NASA Johnson Space Center.

The SEMDA Lab periodically publishes updates to the space station assembly sequence
in a Design Analysis Cycle (DAC) report. This report contains estimates for the station
mass and area properties for many of the planned station configurations, both with and
without visiting vehicles. New I-DEAS model files are released with each DAC update.

The space station databases from SEMDA treat the space station assembly as a collection
of connected rigid bodies. Figure 15, reproduced from the DAC 8 report, identifies the
rigid bodies in the completed station. Each rigid body except the station core is
connected to a parent body by a single pin joint (one degree of freedom). The station core
has no parent, and is the only rigid body that does not contain a joint. Rigid bodies
connected to the core are said to have an alpha joint. Rigid bodies connected to alpha
joint bodies are said to have beta joints, and so on. The rigid body names and
identification numbers remain the same for all configurations regardless of the assembly
stage.

Each rigid body assembly is divided further into elements. An element is the smallest
piece of the station for which there exists a single geometry file. The number of elements
in each rigid body changes as new elements are added or moved as the assembly
progresses.

This arrangement in which a craft consists of rigid bodies that are further divided into
elements is reflected in the architecture of the C++ classes in the SEE (Figure 16).

SEE Developer Guide

36

Figure 15: ISS Rigid Body Diagram (DAC8)

SEE Developer Guide

37

Figure 16: SEE Craft Classes

The ddexreader, appearing at the bottom left of Figure 16, is a class for parsing a file
format (*.ddex) containing the assembly, mass properties and model file data for a given
craft. An SEE utility program called the Dynamics Data Extractor (DDEX) is used to
create the ddex file from an I-DEAS model database. I-DEAS is currently the only CAD
package supported by the DDEX utility.

The ddex file can be thought of as the assembly specification for the spacecraft
configuration. It contains the hierarchy of the rigid bodies, the position and orientation of
each rigid body joint (known as the rigid body pin) 5, and the position and orientation of
each element (known as the element object matrix). It also contains mass properties data,
user notes, and an assembly tree reflecting the organization of the parts as they were
stored in the original I-DEAS database. Element names contained in the ddex file are
used by the application to locate associated vertex data files and to populate element
selection lists for the GUI.

The DDEX utility also automatically creates geometry data (VRML files) from the I-
DEAS database. These VRML (*.wrl) files are then converted to Performer binary files
that are compatible with the Gizmo 3D engine.

Figure 17 shows how the SEE crafts objects relate to the reference frames in the scene
graph. Note that the craft object hierarchy shows all rigid bodies as siblings on the tree,
whereas the reference frame hierarchy is arranged to reflect how the rigid bodies are

SEE Developer Guide

38

physically connected (e.g. the solar panel arrays are children of the Port Inboard Alpha
truss). The organization of the reference frame hierarchy reflects the way the reference
frame objects are organized in the scene graph, where leaf nodes will inherent the
transforms of their parents. The organization of the craft objects reflects the way in
which rigid bodies are created within I-DEAS. This organization will also be used in the
selection interface design, where the rigid body names can aid the user in locating
elements or assemblies of interest.

Figure 17: Craft Objects and Reference Frames

SEE Developer Guide

39

4.12 Inertia Calculations in the SEE

The DDEX file reports the mass properties for each part comprising the craft, including
an inertia matrix. This section describes how the part inertia data is used to calculate and
report inertia data at higher levels such as for rigid bodies and the entire craft assembly.

Below is an excerpt from the DDEX file for ISS DAC 8 Assembly C088_16A describing
the PMA 2 part:

Begin Part
 idNumber: 146
 part: 013_PMA2_2A1
 userName: 013_PMA2_2A1
 modelFile: 013_PMA2_2A1.pfb
 parentID: 143
 transform:
 1 0 0
 0 -1 0
 0 0 -1
 15.5241 -0.00187954 9.70336
 mass: 1164.9
 centerMass:
 -1.42983 -0.00176584 4.47705
 inertia:
 677.174 -0.838519 -193.784
 -0.838519 837.023 -1.3915
 -193.784 -1.3915 750.094
End Part

These inertia values are with respect to the local part reference frame with the origin at
the center of mass. To transform these inertia values to be with respect to the frame of
the parent assembly, the translations and rotations in the transform matrix need to be
applied. This is done using the parallel axis theorem for translation and a similarity
transformation for rotation.

SEE Developer Guide

40

The inertia values reported in the DDEX file are the inertia metrics. The moments of
inertia (the values along the diagonal) are always positive. The products of inertia (the
off-diagonal elements) are the positive integrals. In the example above, the values for
the products of inertia and the inertia tensor would be written like this:

Products of Inertia:

∫ === xydmIyxIxy -0.838519

∫ === xzdmIzxIxz -193.784

∫ === yzdmIzyIyz -1.3915

The Inertia Tensor using the negative integrals would be:

 Ixx -Ixy -Ixz 677.174 0.838519 193.784
-Ixy Iyy -Iyz = 0.838519 837.023 1.3915
-Ixz -Iyz Izz -193.784 -1.3915 750.094

This inertia tensor reported using the negative integrals is consistent with the ISS DAC 8
book (On-Orbit Assembly, Modeling, and Mass Properties Data Book, Volume I,
International Space Station Program, DAC8, Revision Sequence E, NASA Johnson
Space Center, August 1999). On page 7-11 of the DAC book the mass properties for
PMA 2 are reported there as follows:

Mass (kg): 1165

Center of Mass [mm]:
X = -1430
Y = -2
Z = 4477

Inertia Tensor [kg*m^2]
677 1 194
1 837 1
194 1 750

Notice that the products of inertia have different sign than the values in the DDEX file.

The note on page 7-3 of the DAC 8 Book says this regarding the inertia tensor:
“Note: Products of inertia specified in element properties tables are reported using
negative integrals.”

SEE Developer Guide

41

Inertia Report in the Mass Properties GUI

The SEE mass properties interface follows the DAC 8 book convention of reporting the
products of inertia as negative integrals. The figure below shows the interface reporting
the PMA 2 properties:

Note that the products of inertia are negative integrals, consistent with the DAC 8
Book.

SEE Developer Guide

42

Calculating the Inertia of an Assembly

To calculate the inertia matrix for an assembly of parts, the inertia data for each part must
be accounted for. For parts that are in the same orientation as the assembly, only the
translation of coordinate system needs to be applied using the parallel axis theorem. For
parts in a different orientation, the part inertia matrix must be expressed in the parent
frame using a similarity transformation.

Translation of Coordinate System

To calculate the inertia of a mass M in new coordinate system A, we use the Parallel Axis
Theorem.

)(22
11 COMCOM zyMIxxxIx ++=)(11 COMCOMyxMIxyyIx −=

)(22
11 COMCOM zxMIyyyIy ++=)(11 COMCOMzxMIxzzIx −=

)(22
11 COMCOM yxMIzzzIz ++=)(11 COMCOMzyMIyzzIy −=

 [ref: Spaceflight Dynamics, William E. Wiesel, Irwin/McGraw-Hill 1989 p108]

Here we are using the negative integrals for the products of inertia, e.g.:

xydmIxy ∫−=

Z1

X1 Y1

Z

X Y

COM

A

mass M

Z1

X1 Y1

Z

X Y

COM

A

Z1

X1 Y1

Z

X Y

COM

Z1

X1 Y1

Z

X Y

COM

A

mass M

SEE Developer Guide

43

Rotation of Coordinate System

When the part transform includes a rotation matrix R, the inertia in the new coordinate
system I1 is calculated by:

I1 = RIRT

[ref http://www.syscon.uu.se/Personnel/vs/InertialMatrix.pdf]

This equation is referred to as a similarity transformation (e.g angles are preserved for
shapes transformed by the matrices).

Summing the Integrals

When the inertia tensor for each part in the assembly has been translated to the assembly
center of mass and rotated to match the parent coordinate frame, the inertia for the
assembly is obtained by summing the inertias of each part. We used the negative integrals
for the products of inertia when performing the translation for the parallel axis theorem,
so the resultant inertia matrix for our assembly contains the negative integrals.

Mass Properties Code

Mass properties calls are generally implemented in the SEE as virtual functions in class
SolarSystemObject. The function solarSystemObject::getInertiaMatrix()
Always returns the inertia tensor using negative integrals for the products of inertia. The
code in class SolarSystemObject performs the translation, rotation and summation of
the inertia tensors for all child objects of the assembly for which the function was called.
The function is only overridden in subclass part, where it simply returns the inertia
tensor of the part. Even in class part, the matrix returned contains the negative integrals.

SEE Developer Guide

44

EXCERPT FROM IDEAS DOCUMENTATION

(May 23, 2000) “InertiaProperties.html”

The Sign on the Products of Inertia

One final point on the Products of Inertia: it has been stated by more than one user that
there are two conventions for defining the Products of Inertia. One method includes a
minus sign on the Products of Inertia and the other does not. This author is not precisely
sure from where this "convention" comes, but he can hazard a guess.
First of all, this author has not been able to find any reference to this "convention" in any
textbook or dynamics book that he has perused, and he has looked at several. However,
there is a very likely candidate for where the concept might originate. As stated before,
the most basic rotational motion equation is:

(1) T = I*alpha

where "T" is the torque which must be applied to create an angular acceleration of
"alpha" for a body which has Mass Moment of Inertia "I". The terms in this equation
are actually matrices. The "I" matrix is a symmetric matrix and it contains what we refer
to as the Moments of Inertia (the diagonal terms in the matrix) and the Products of
Inertia (the off-diagonal terms in the matrix). The "I" matrix looks as follows:

 Moment of Inertia Matrix

Ixx Ixy Ixz

(4)

Ixy Iyy Iyz

Ixz Iyz Izz

SEE Developer Guide

45

EXCERPT FROM IDEAS DOCUMENTATION - continued

Sometimes the Products of Inertia are written as Pxy, Pxz, etc. There is another matrix
equation in angular motion. It is the angular momentum equation. In matrix form, the
equation is:

(5) H = I'*omega

where "H" is the momentum matrix, "omega" is the angular velocity matrix, and "I'" is
the Inertia Tensor matrix, and not the Moment of Inertia matrix. This Inertia Tensor
matrix looks almost identical to the Moment of Inertia matrix except for the sign on the
off-diagonal terms (the Products of Inertia). Here is the Inertia Tensor:

 Inertia Tensor Matrix

Ixx -Ixy -Ixz

(6)

-Ixy Iyy -Iyz

-Ixz -Iyz Izz

Again, notice that the Inertia Tensor matrix (I') looks almost the same as the Moment
of Inertia matrix (I) except there is a negative sign on every Product of Inertia term
(the off-diagonal terms) in the Inertia Tensor.
I-DEAS is calculating the elements of the Moment of Inertia matrix, not the Inertia
Tensor matrix, therefore, there is no negative sign "added" to the computed values. Or to
put it in terms as originally stated by some users, I-DEAS does not "add" a negative sign;
if a Product of Inertia is a negative value, it is a negative value because that is the value
it has when it appears as an element in the Moment of Inertia matrix.

SEE Developer Guide

46

4.13 Joint Models

Each rigid body on a given craft is connected to it’s parent body by a joint. At present,
only one-degree-of-freedom joints are supported in the SEE, although the architecture is
designed to enable the addition of more complicated joints by extending the subclasses
of JointModel. Class JointModel currently handles the generation of joint position
data for pin joints or linear joints.
 Linear joints (subclass JointLinScript) move according to a user-specified schedule
(e.g. rates or positions specified over selected intervals of time). Pin joints can be
programmed to move according to a user-specified schedule (class JointRevScript) or
they can be identified as sun-tracking joints (class JointSunTrack).
The user describes the desired motion or “joint rules” for each rigid body for a selected
craft using the joint-articulation interface. These rules include information on when to
start and stop the joint motion and how the joint should move over the selected interval.
A new JointRule structure is instantiated for each interval. The information in the
structure is used to instantiate and initialize the JointModel class of the appropriate
type.
Each rigid_body maintains a list of it’s own joint rules. At each pass through the SEE
event loop, rigid_body uses the current simulation time to look up the joint-rule that
applies for the current time. Like all dynamics models in the SEE, the joint model code
must be capable of calculating the requested output data using only the input data
available at the current simulation time. Integration over time intervals or using the
position data from the previous event loop is not allowed since the SEE time navigation
interface allows random access to time.

Sun Tracking vs Scripted Mode

Both linear and pin joints support a “scripted” joint motion. In this mode the joint
position is calculated simply by multiplying the joint rotation (or slide) rate by the
elapsed time, and adding this value to the initial joint position. The elapsed time is the
difference between the current simulation time and the craft epoch. Note that if the craft
epoch is changed, the start-time for the joint motion elapsed time calculation is changed
as well. The joint rotation rate is a user-input supplied via the joint articulation dialog.
The rate can be entered directly or can be derived from position and time entries in the
joint motion description.

Only pin joints support sun-tracking mode. In this mode, the current simulation time is
used only to determine if sun-tracking has been requested for the current frame. Sun
tracking is implemented identically for both alpha and beta joints.
The algorithm is initialized by providing a “pointing vector” and a “pin vector”. The
pointing vector is the vector which is desired to be pointed at the sun. This is a user
input, e.g. the direction normal to the cell-side of the solar array, or the edge of an
articulating radiator panel. The pin vector is the positive sense (right-hand-rule) of the
joint rotation axis. The pin vector direction is supplied in the craft DDEX file.
During a scene update, the algorithm attempts to minimize the angle between the
pointing vector and the direction from the joint location to the sun. With both alpha and

SEE Developer Guide

47

beta joints operational, perfect tracking should be achieved. If only one joint is tracking,
the angle may be non-zero.
The sun-tracking joint model will accept an offset value to be applied to the position
result (e.g. “always add +5 degrees to the optimal sun-tracking position”) but does not
accept joint position or rate limits.

4.14 Visiting Vehicles

A visiting vehicle object in the SEE is used simulate and render a docking or undocking
procedure. As a type of craft, visiting vehicles maintain all craft functionality. In
addition, they contain the information necessary to locate the ports of the docking and
target vehicles. In order to weaken the dependency of a visiting vehicle and its target
vehicle, the final architecture for visiting vehicles will separate this information. All
crafts will maintain the locations of their docking ports relative to the design reference
frame. A visiting vehicle manager will coordinate the analysis of data (using software
such as DOCKSIM), as well as the rendering of docking trajectories. The manager will
require all visiting and target vehicles to register their port locations.

4.15 Collision Detection

Collision and proximity analysis is available in the SEE between any two crafts. The
collision analysis determines at any given time step or series of time steps if any two
objects have intersecting geometry. The proximity analysis indicates the minimum
distance between any two objects.

These features are implemented in the SEE via the PQP application programming
interface. The PQP API was created by the Gamma Research Group at the University of
North Carolina (gamma.cs.unc.edu). PQP provides the user the ability to check
proximity, tolerances, and collision between polygonal based objects. There are no
topological restrictions on the objects being tested, such as convex hulls and holes in the
surface. Each object is treated as a polygon cloud. To use PQP, the software developer
must create PQP objects for those models to be tested. This is done by providing the
PQP software the vertex data for each of the polygons belonging to the collision object.
This data is provided in the objects design reference frame. For the SEE, a subroutine
was created to extract out all of the polygons for each of the graphical models currently
loaded in the scene. Therefore, no knowledge of what type of model was loaded into the
application is required. After all of the polygons have been added to the PQP Model, the
developer can call the PQP libraries and test for proximity distances, tolerance violations,
and collisions. For each of these tests, the test requires the user to provide a position and
orientation for each part to be tested.

A proximity test is an exhaustive test of all polygons of each model being analyzed.
Upon completing this test, the PQP libraries provide the developer with the point in each
model that represents the closest distance between the objects. This data is provided in
local coordinates of each model. For a tolerance test, the user can ask the PQP software

SEE Developer Guide

48

to check to see if the distance between two objects violates a given user specified
tolerance distance. This test is similar to the proximity test, except that if a distance is
found less than the tolerance, the PQP libraries stop checking for other closer distances.
The two points that form the distance violating the tolerance distance can be queried from
the libraries. For a collision detection test, the PQP libraries check to see if any polygons
on the two models are intersecting. The user can specify one of two options for this test.
The user can tell the PQP libraries to stop checking for collisions once one collision is
found, or the PQP libraries can be told to continue to check and extract all collisions. A
query for if a collision occurred and a list of colliding polygons can be obtained from
PQP. Again, the data is provided back in local coordinates to the collision models.

Preliminary testing of the PQP software in the SEE indicates that even for scenes with
polygon counts in the 100,000 to 200,000 range the collision detection algorithm will run
at reasonable frame rates.

4.16 Cameras, Rendering Windows, and Navigation

When a user asks the SEE to create a new graphical (or rendering) window, the program
must create a virtual camera, located and oriented within the scene, and connect the
camera view to the screen space occupied by the rendering window. The rendering
window also accepts mouse and keyboard inputs to allow the user to navigate. Thus the
classes that control the graphical (or rendering) window, the virtual camera, and
navigation through the scene are closely related. Figure 18 depicts the relationship of the
main classes for these functions.

The rendering window is created using class GWindow, a simple Qt window. Requesting
a new GWindow object creates a new camera. The GWindow houses a GWidget, the Qt
rendering widget. The GWidget class forms the primary handshake between Qt and
Gizmo3D. It is a Qt widget that contains the Gizmo3D rendering object, a gzWindow. In
the construction of a GWidget, a Camera object is assigned, paralleling the Gizmo3D
gzCamera assigned to the gzWindow. The Camera object maintains a link to the
gzCamera, and is responsible for updating the gzCamera’s settings on a per frame basis.

One or more Scene objects will be instantiated within the application. A Scene object is
responsible for monitoring the construction of a Gizmo3D scene graph with a gzScene
root node. A Scene must be assigned to a Camera before rendering with a call to
setScene. A Camera’s scene may be changed with repeated calls to setScene.

Camera navigation is controlled by means of an MVTransformer object. Subclasses of
MVTransformer control specific navigational behavior (such as trackball or fly modes)
and accept keyboard and mouse events. Currently two transformer classes are available,
MVKMFlyTransformer and MVKMTrackballTransformer. These classes are instantiated
within a GWidget object, which passes Qt keyboard and mouse events to the transformer.
The GWidget is also responsible for determining the current transformer to be used by the
Camera. The transformer translates keyboard and mouse events into a position and

SEE Developer Guide

49

orientation matrix for the camera. The Camera uses this matrix to update the Gizmo3D
gzCamera.

Cameras are deleted when the parent GWindow is deleted. The GWindow is set to have a
destructive close, so that close events result in the deletion of the GWindow, GWidget,
Camera, transformers, and corresponding Gizmo3D gzWindow and gzCamera. The Scene
and gzScene objects persist.

A snapshot of the active camera view can be saved in several file formats including .bmp,
.jpg and .png. Image capturing within the SEE is a two-phase process. The first phase
captures the rendered scene into memory by use of the Gizmo gzImageRender class. In
effect, a rendering pass of the scene graph is made with the resulting image stored in
memory (as opposed to being displayed on a monitor). In order to handle depth
buffering issues, the gzImageRender class has been subclassed to perform multiple
rendering passes, far to near. In the second phase of the process, the resultant image is
transferred to a QPixmap object, an SEE "stamp" is applied to the image, and the image is
saved to disk in the desired graphics format.

Figure 18: Rendering and Navigation Classes

SEE Developer Guide

50

4.17 The Simulation Time System

The simulation time is stored internally as a Julian Date in the SEEdate class. Two
double precision floating point variables are used to store this value. The first double
represents the number of days elapsed since 4713 BC January 1, Greenwich noon,
truncated to the nearest whole number of minutes. The second double represents the
number of seconds, between zero to sixty, beyond the current minute. Stored in this
way, the date and time can be resolved to roughly 1.0e-13 seconds for years between
4713 BC and 22,666 A.D. Any time dependent variables in the SEE will be updated
once per event loop, based on the Julian Date for the current frame. For algorithms that
operate on an elapsed time (such as the Kepler orbit creation routines), the delta-t is
computed by comparing the current Julian Date is to the epoch being used for that
algorithm.

All delta times are returned in seconds only. This limits the resolution on the addition or
subtraction of time from a selected date depending on the value of the delta. For
example, when adding 946728000.000000 seconds (~30 years) to a selected date, the
available precision is limited to 1.0e-6 seconds by the 15 available digits in the seconds
field.

The SEEdate class overloads the appropriate C++ math operators to allow differencing
dates, adding or subtracting times from the selected date, and comparing dates. Input and
output stream operators are also overloaded to allow quick access to string versions of
dates at any a configurable precision. Time zones are supported by the SEEdate class but
are not used in the current version of the SEE (all time zones are entered and reported as
UTC).

When the simulation time is running, the rate of the passage of simulation time is
configurable by the user. The precision of the SEE time system allows the time rate to
span between one one-thousandth real time and thousands of years per second. The
simulation time for a given frame is calculated by polling the operating system clock at
successive passes through the event loop, multiplying this elapsed real time by the user
specified time rate multiplier, and adding it to the simulation time for the previous frame
(Figure 19).

SEE Developer Guide

e
fram
51

Figure 19: Preparing the Simulation Time

SEE Developer Guide

52

4.18 Building the Mission

The collection of objects in a given scene is referred to in the SEE as a “mission”. A
mission will contain a model of the solar system containing a model of the Sun and any
additional planets, moons, crafts and other SEE objects added by the user. Data files
containing libraries of objects that can be added, deleted, or modified during the
application session are provided as part of the SEE and are referred to as “stock” objects.
After a stock object is added to the scene the user may modify the parameters that
describe that object and export the modified version as a “custom” object. These custom
objects are saved in a user-writeable directory and are available for import to other
missions.

All of the information required for the stock planets is hard-coded into a std::map
member of class SolarSystem. This std::map stores the name, parent, number of
children, source type, texture map, texture offset, and number of points for the orbit path.
The hard-coding of this information enables the setup of the solar system using only the
names of the desired planets and moons. This listing is placed in the file solar_system.ini
included with each mission. An example of the file is shown below:

Example of a solar_system.ini file:

[SOLAR SYSTEM]

[STOCK PLANETS]
EARTH
MOON
JUPITER
IO
EUROPA
#End of List#

[CUSTOM PLANETS]
Custom Planet = Mars2

The custom planet “Mars2” will be described further in the object subdirectory of the
same name. In this subdirectory the file with the planet name and a “.psys” extension
will list properties of the planet and its moons. Note that moons cannot be imported or
exported separately from planets – they are always stored together as a “planetary
system”. An example file is shown below:

SEE Developer Guide

53

File Mars2.psys:

[DESCRIPTION]
Name = Mars2
Notes = Custom Mars System
Primary = Sun
Number of Children = 2

[DESIGN REF FRAME]
Name = J2000
Parent = Ecliptic
Base_Source = Kepler
Base_Source_File = kepler4.ref

[PYHSICAL PROPERTIES]
Mass = 0.64185e24
Equatorial radius = 3394.0

[GRAPHICS]
Model = sphere
Tex Map = mars/marsx.png
Tex Offset = -90.0

[PATH]
Red = 0.3294118
Green = 0.000000
Blue = 1.000000
orbit_scale=1.0
num_pts=100

=========================
[CHILDREN]
=========================
Name = Phobos
Notes = Custom Mars System
Primary = Mars2
[DESIGN REF FRAME]
Name = J2000
Parent = Equatorial
Base_Source = Kepler
Base_Source_File = kepler2.ref
[PYHSICAL PROPERTIES]
Mass = 0.0000000106e24
Equatorial radius = 13.0
[GRAPHICS]
Model = sphere
Tex Map = mars/phobos/phobosx.png
Tex Offset = -90.0
[PATH]
Red = 0.5
Green = 0.000000
Blue = 1.000000
orbit_scale=1.0
num_pts=100
[END OF ENTRY]

SEE Developer Guide

54

The systemParser class handles the reading of this file and stores the desired planets
and moons in a std::vector. This std::vector is then iterated and the required
information is extracted out of the std::map member of the SolarSystem using the
object's name. This creates the solar struct in the systemParser which is used to
retrieve the ephemeris data out of the solar_system_data.ini file.

A wizard interface is provided at application launch to handle the retrieval of a saved
mission or to create a new one to be used in the current session. A mission is stored as a
directory tree in a user-writeable directory path specified with the environment variable
SEE_USER. An example of a mission directory tree is shown below:

Example Mission Directory Tree:

c069_12a-dac8
 |
 c069_12a
 |
 craft.dat
 c069_12a.ddex
 default.man
 kepler.ref
 |
 solarsystem
 |
 solar_system.ini
 |
 mission.dat

All missions are loaded from a temporary subdirectory “/working” under SEE_USER.
Retrieving a saved mission is implemented by replacing the current working directory
with the contents of the directory tree for the incoming mission. The file mission.dat
located at the top level of the mission directory tree contains links to all other optional
files needed to load the requested objects. An example file is shown below:

Sample Mission.dat file:

[MISSION]
Title = ISS 12a (DAC 8)
Description = Default mission for 12a

Start Year = 2003
Start Month = 4
Start Day = 10
Start Time = 12:00:00

[CRAFTS]
Craft = c069_12a

SEE Developer Guide

55

New crafts may be added to the current mission interactively using the New Craft wizard
interface. When this new craft is loaded the system will go through a check to enforce
name uniqueness among the crafts already in the scene. Initially the craft directory is set
to match the craft name entered into the wizard by the user. To make sure that the adding
of this craft does not overwrite any of the existing crafts already in the working directory,
it checks to see if this craft directory is unique. If its not unique, it is appended with a
number before it is copied into the working directory. The next check for uniqueness
occurs in class craft where the craft's name is checked for uniqueness. If its name is not
unique, the name is appended with a number. Once the craft name and directory have
gone through their uniqueness checks, the craft is then added to the mission.dat file of
the working mission. This enables the mission with the new craft to be resumed after an
exit or saved during a session.

4.19 Bookmarks

The Bookmarks feature of the SEE enables the user to save and recall some of the
environment settings in order to allow the given view to be easily re-constructed. As of
version beta 0.40, these environment settings include the simulation time, the scaling
factor that has been applied to any object in the scene, and the icon objects that have been
added to the scene.

The elemental class of the bookmarks feature is a virtual class called marker. The objects
of the marker subclasses (scalemarker, timemarker, iconmarker) contain the data to
be saved and retrieved (e.g. an object scale, simulation time or icon state). An object
scale marker, for example, may contain scaling parameters for some or all of the objects
in the current mission. Collections of Markers are assembled into objects of class
Bookmark. A Bookmark object may contain any number of marker objects which need
not be of the same type.

Routines for creating, deleting, loading, saving and otherwise managing the user’s
bookmarks is encapsulated in the class BookmarkManager. Separate activate functions
are provided in the BookmarkManager to retrieve and use the information in the three
types of markers. Also in BookmarkManager are special functions for finding the nearest
time marker, the nearest marker ahead of the current time, and the nearest prior time
marker.

4.20 Analysis Tools

The SEE provides several analysis features for extracting quantitative information from
the current scene. While the specific implementation of these features is dependant on
the type of analysis, the general architecture for a given analysis tool should follow one
of two patterns. For analyses that require data to be gathered over the course of a
selected time span, the SEE analysis routine enables a flag that tells the event loop to
make a pass through the data-gathering function of the corresponding analysis code with
each frame update. For analyses that are time-independent (e.g. the calculation of area
properties for a selected craft) the SEE event loop is halted until the analysis is finished.

SEE Developer Guide

56

No commands are accepted from the user in this mode except those presented by any
status dialog boxes displayed by the analysis routine (e.g. a ‘Cancel’ button to abort the
analysis). This version of the SEE does not utilize multiple program threads, so events in
the background may not continue while the SEE event loop is halted.

The Collision/Proximity analysis, Line-of-Sight analysis, Dynamics Report, and ARCD
are all examples of time-dependent analyses. The time-dependant analyses may be
further classified into two types, distinguished by whether the routines require a fixed-
time-step analysis or a current-frame analysis. A fixed-time-step analysis requires the
SEE to collect data over a specified range of simulation time at specified intervals (time
steps). When this type of analysis begins, the simulation time jumps to the required value
and a flag in the event loop is enabled to indicate that additional information is being
requested by an analysis function. When the current frame is complete, the simulation
time is automatically advanced by one analysis time step. The process completes when
the analysis stop time is reached. Data files and summary reports containing the results
of the simulation can be viewed once the analysis has finished. During a fixed-time-step
analysis the user is not able to issue time navigation commands. Depending on the
specific analysis code, the SEE simulation time after the analysis is complete may be left
at the last analysis time step, the first analysis time step, or the time at which the analysis
was initially launched. The Dynamics Report, CAPS Full Survey and ARCD are time-
stepped analyses. The Collision/Proximity tool has both a time-stepped mode and a
current-frame mode.

A current-frame time-dependent analysis such as the Line-of-Sight tool or the ‘current-
frame mode’ of the Collision/Proximity tool does not take over control of the SEE
simulation time. The user has full time and space navigation capability. However, since
the data request by the analysis routine must be re-calculated every frame, the application
frame rate may be impacted when an analysis of this type is enabled.

The ARCD module of the SEE is described in further detail in the SEE-ARCD
Integration Report [8].

SEE Developer Guide

57

4.20.1 Area Report

The Area Report function is an example of a time independent analysis routine. Once a
request to run the area report has been made, the event loop is suspended until the
operation is complete. To display the current completion status of the command, a
progress bar is displayed along with a cancel button to allow the user to abort. Because
the event loop is not active, the QT processEvents command must be called at regular
intervals in the code that is used to collect the area data. This command allows the
progress bar to be re-drawn and the cancel command to be processed if one was issued.
All procedures that suspend the event loop for significant periods of time should provide
a progress status to indicate to the user that the SEE application is still functioning. If
possible a cancel or abort opportunity should also be provided.

The SEE uses a routine called raytrace to calculate the projected areas of a craft from
three directions, set by default to be +X, +Y and +Z. Arguments may be passed to this
function to change the ‘wind’ direction and to select from one of three blockage factoring
or “shadowing” modes:

• No shadowing: parts are not blocked by other parts when projected area is
calculated.

• Intra-body shadowing: parts may block other parts within a rigid body, but do not

block parts in other rigid bodies.

• Inter-body shadowing parts may block any other parts, in the same or different
rigid body.

SEE Developer Guide

58

4.21 Jet Plume Visualization

Thruster jet plumes may be visualized in the SEE for crafts that contain jet firing data.
The jets associated with a craft or visiting vehicle are described by a text file located in
the craft subdirectory. The file describes the color, size, shape, location and name of
each jet on the craft. Each jet description may optionally contain the name and format of
a jet firing history file. Currently supported jet firing history formats include the
Docksim–RCS format, and a “Compact” format. The Docksim-RCS format contains
firing schedules for a number of thrusters in a single file. The thruster ID number is used
as an identifier in this case to connect the jets to the correct firing data. The Compact
format contains a single jet firing history data set consisting of two columns, the jet firing
start times and the firing durations. The jets on a given craft can each be independently
assigned a jet firing history in either of the currently available formats.
The plume visualization controls are available in a large dialog box format that provides
automatic help text, or in a compact dockable toolbar mode. The controls allow the user
to select a minimum opacity level that will be used for all jets to draw the plume cone
when the thruster is not firing. This mode can be used to examine the location of all the
thrusters. When the thruster is firing, the visualization can be done in one of two modes.
In each mode the opacity level will be increased from the user selected minimum
according to an algorithm designed to allow meaningful visualizations at various
simulation rates. These algorithms are designed to correct the problems caused when the
elapsed simulation time between subsequent rendered frames is much larger than the
typical thruster firing duration. This is frequently the case since jet minimum on-times
are usually in the millisecond range, whereas docking maneuvers and other craft motions
typically occur over minutes or hours. Using a simple “on-or-off” algorithm to draw the
thruster cone at the rendered frame may produce poor results under these conditions, e.g.
making a constant duty cycle appear erratic, making high duty cycles appear as steady-
state firing, and missing low duty cycles altogether. The solution implemented here
utilizes a time sampling window centered on the current frame to increase the jet opacity
according to the amount of jet on-time that occurred in the window. When the jet fires
through the entire sampling window, the jet opacity is set to 100%.
 In “automatic sampling” mode, the size of the window is automatically adjusted
according to the current simulation time rate. Specifically, increasing the time rate will
grow the sampling window so that short pulses will not be missed. Slowing the time rate
will shrink the window, allowing the jet firing times to be resolved more accurately. In
“manual” sampling mode, the sampling window size remains constant until the user
adjusts it. This mode is particularly effective when the simulation time is stopped.
Adjusting the sampling window when time is stopped will reveal which thrusters were
most active in the vicinity of the current frame.

Class FOVManager is used to read the jet information associated with a craft, which is
always stored in the “fovs.dat” file in the craft directory. FOVManager also instantiates
the Thruster objects and connects the thruster to the craft in the object hierarchy and
reference frame hierarchy. Class Thruster is derived from class FieldOfViewCone and
adds functions for handling the jet firing history visualization techniques.

SEE Developer Guide

59

4.22 Plotting

The SEE plotting routines make use of the Qwt widget libraries to graphically display the
plot data, and are otherwise implemented like a time-stepped analysis tool. The user sets
up the desired plot parameters via the wizard interface, and selects Finish to start the plot
data collection procedure. For all plots except Jet Firing Histories, clicking the Finish
button sets a flag that directs the SEE to take control of the simulation time and collect
the desired plot data. The data may include one or more vectors of time-dependent
parameters. Each of these vectors and a vector containing the Julian date of each
sampled time is sent by the PlotManager object to the PlotDialog widget. In class
PlotDialog the vectors are converted to plot lines utilizing the Qwt graphing widgets.
For the Jet Firing History case, data is not sampled inside the event loop but is read
directly from the jet history data stored in the Thruster objects.

In the plot display the current simulation time is always marked by a red vertical line
unless the plot window does not span the current time.

Note that the plot data cannot be changed after the plot has been drawn. If the user
makes changes to the mission after a plot has been made (e.g. changed the attitude
parameters of a spacecraft after the yaw-pitch-roll sequence has been plotted), these
changes will not be reflected on an existing plot. New plots will of course make use of
all current data that exists before the plotting wizard is completed.

4.23 Macros

Macros are a convenient means for performing repetitive tasks within the SEE
application. Scenarios in which the user needs to repeatedly create lines-of-sight or run
thousands of collision analyses in batch can benefit from the use of macros. In brief,
macros are created and managed and activated through the MacroManager class. Even
though it is the primary container, the Macro class is extremely simple. It contains a list
of Commands, a method for adding Commands, and an output operator. The Command class
is the workhorse of macro implementation. This base class is subclassed in one-to-one
correspondence with the SEE managers. Each Command object stores an action to be
implemented by some SEE manager and all of the parameters required by that action.
When a macro is activated, the MacroManager is responsible for sending each of these
commands to the appropriate manager within the SEE application. In turn, each manager
is responsible for activating the action issued by the command.

SEE Developer Guide

60

Figure 20: Macro Classes

The Command Class

Each SEE manager should have a corresponding command class that inherits the
Command class. The subclass must, in its constructor, register all actions handled by the
manager along with a list of parameters for each action. A command is created by setting
the desired action and appropriate parameters. The subclass typically need only
implement the methods for saving or retrieving parameters whose values are to be chosen
from a list. Most input, output and parameter retrieval is handled by the Command base
class. Note that the parameter values are stored using void pointers and type information.
Thus any subclass accessing the parameters must perform dynamic type casting.

Creating a Macro

Loading, saving, creating, and activating macros are all within the purview of the
MacroManager class. To create a macro, a name must be supplied to the
MacroManager’s createMacro command. A pointer to an empty macro is returned to
the caller. Commands are created by sending a manager type (or category) to the
MacroManager’s createCommand method. A pointer to an empty command is returned
to the caller. The command’s action is set and the appropriate parameters are stored
within the command. The command is then added to the macro. The order in which
commands are added will determine the order in which they are executed when the macro
is activated.

MacroManager

Macro

Command
 : Action
 : Parameters

IconManager

…

CollisionManager

CraftManager

SEE Developer Guide

61

Activating a Macro

Sending a name to the MacroManager’s activateMacro command will start the playing
of any macro matching that name. The MacroManager steps through the macro’s list of
commands in order. The command type is identified and the command is sent to the
appropriate SEE manager’s doCommand method. The SEE manager parses the
command’s action and parameters and performs the required duties. When the action is
complete, the SEE manager emits a commandDone signal. The MacroManager picks up
this signal and the next command in the macro is issued. The use of signals allows the
macro to execute in a linear fashion while maintaining the main event loop.

4.24 Movie Capture

The recording of AVI movie files is a two-phase process, preparing the frames (images)
and writing the movie file. An AVI file consists of a sequence of still images which
when played in rapid succession produce an animated effect. In the SEE application,
movie images are captured using the same device as still image captures, a
gzImageRender object. This object acts as a virtual camera, the only difference being
that results are rendered into memory rather than to the screen. The gzImageRender
object renders the current scene to a gzImage_RGBA_8 object whose width and height
match that of the current screen window. The pixel color information is then extracted
from the gzImage_RGBA_8 object and stored in a BGRA byte buffer for movie
processing.

The creation of AVI movie files uses platform dependent code. The ability to record AVI
files is currently restricted to the Win32 platform. The platform dependent code is
wrapped within the Movie object so that the SEE application my interface with Movie
object in a platform independent fashion. The MSVC++ compiler on Win32 platforms
supplies the library that generates the AVI files. An AVI library will be needed for the
Unix platforms.

The three steps for creating an AVI file are opening the file for writing, writing each
frame to the file, and then closing the file. The Movie object’s open method requires an
output file name, the size of the images to be added, the playback rate, and whether or not
the file is to be compressed. If the file is to be compressed, the Cinepak compression
codec is used and a compression rate should be supplied. After the movie file has been
opened, each frame is added to the file by sending the Movie object a buffer of pixel color
data corresponding to the size specified in the open command. After all the frames have
been added, a simple close method should be called.

SEE Developer Guide

62

The Movie object also offers a static method for compressing uncompressed movie files.
The name of an existing uncompressed AVI file and the output file name should be
supplied as well as the level of compression desired. The routine will read in the
uncompressed file and produce a file compressed using the Cinepak codec. If a Qt
progress bar is supplied, it will be updated to show the progress of the compression. The
SEE application uses the Movie object’s compress method within a Qt thread so that the
main application may continue to operate during the compression of a file. Progress is
displayed on the right end of the main window’s status bar.

4.25 Online Help

Online help features are integrated in the SEE by utilizing the Qt Assistant, a help
browser freely distributed within the Qt development package. The Qt Assistant is
customized by the creation of an Assitant document profile, a file format which is fully
documented in the Qt online manuals. A help window is launched from within the SEE
by instantiating a QAssitantClient object and specifying a URL pointing to the file to be
displayed.

All help windows are launched from the MainWindow object. Any dialog that needs to
activate a help window does so by emitting a signal which must be connected to the
MainWindow’s openHelpAssistant() slot. The QAssistantClient will launch the Qt
Assistant and establish communication with that process. Future requests will be
displayed in the same process window if the user has not closed it; otherwise, a new
process will be launched.

A given SEE dialog is connected to a specific URL in the HelpDesk object. The
HelpDesk maintains a map of dialog names and URLs. Currently, all help pages are
extracted from the SEE User Guide. Should the user guide be significantly altered, then
the HelpDesk must reflect those changes.

SEE Developer Guide

63

4.25.1 SEE FILE SYSTEM

The SEE files are categorized as either read-only or as user files. The read-only files
include the SEE executables as well as data and images needed to support the application
at run-time. The read-only files are not modified during program execution. The user
files include missions, crafts, objects, screen-captures and other data files that can be
modified during program execution.

During the program installation the SEE read-only files are copied to the user-selected
target destination directory. On Windows systems this directory is set to the Program
Files area by default. Installation into the default area may therefore require
administrator privileges. Also, a sample user directory containing several missions, crafts
and miscellaneous models is copied to the read-only area.

When the SEE application is run by a new user for the first time, the user will be
prompted to select a working or “user” directory where they have file-writing
permissions. The user is also given the option either to have the SEE user sample
directory copied to the selected user directory, or to select an existing SEE user area. The
SEE application will not run without a valid SEE user directory having been specified.
The directory structure of the read-only and user areas in shown in Appendix A.

After a valid SEE user area has been selected, the location of this directory is written in
an initialization file (“see.ini”) so the user area can be automatically located the next time
the current user runs the SEE. The file see.ini is saved in the directory pointed to by the
QDir::home () method in the QT API. According to the QT documentation, this method
returns the following directory name:

“Under Windows the HOME environment variable is used. If this does not exist the
USERPROFILE environment variable is used. If that does not exist the path is formed by
concatenating the HOMEDRIVE and HOMEPATH environment variables. If they don't
exist the rootDirPath() is used (this uses the SystemDrive environment variable). If none
of these exist "C:\" is used.”

The user directory location may be changed during program execution by user request.
When this occurs the new directory location is updated in the see.ini file.

SEE Developer Guide

64

5 VERIFICATION

The results of recent tests of the SEE dynamics routines and planned tests are described
here. These tests should be performed when modifications to the SEE dynamics codes
are made.

5.1 Test Case 1

Objective:

Perform a visual check of a spacecraft object position over the Earth within the SEE
spacecraft to known spacecraft position over Earth. This should verify that a craft placed
in Earth orbit with known orbital elements is accurately placed within the SEE
environment, relative to the latitude/longitude grid on the SEE Earth. The approach
would be to put the orbit elements for a known object into both the SEE and Satellite
Tool Kit (STK) software, and perform visual and measured comparisons for the object
latitude and longitude at the time for which the orbit elements were specified.

The spacecraft chosen was the International Space Station (ISS). The position
information for ISS was taken from published two line element sets (TLE) published by
NORAD and used for object tracking over short durations (TLE found at
'http://www.hq.nasa.gov/osf/station/viewing/issvis.html').
The TLE set for ISS at 00:17am EST on 12/03/2002 were obtained. TLE information is
specified relative to the true equator, mean ecliptic of epoch (TEME) coordinate frame.
The data was:

ISS
1 25544U 98067A 02337.22028935 .00190497 00000-0 25489-2 0 4351
2 25544 51.6340 284.2634 0003290 235.0992 330.7125 15.56838241230339

Name......................................ISS
NORAD ID#.................................25544
Epoch Year................................2002
Epoch Day.................................337.2203 = 12/3/02 00:17am
EST
Mean Altitude (km)........................396.768
Period (min)..............................92.49
Apogee (km)...............................398.997
Perigee (km)..............................394.539
Inclination (degrees).....................51.634
Right Ascension of Ascending
 Node (RAAN, degrees)....................284.2634
Eccentricity..............................0.000329
Argument of Perigee (degrees).............235.0992
Mean Anomaly (degrees)....................330.7125
Mean Motion (revs. per 24-hr. day)........15.56838
Decay Rate................................0.00190497
Epoch Revolution (since Zarya launch).....23033
Element Set#..............................435
Visible up to Latitude (degrees)..........71.3

SEE Developer Guide

65

The above epoch is 05:17:13 am UT, or 2452611.7203 Julian date.

The TLE information for the TEME coordinate frame was converted to J2000 orbit
elements by utilizing the menus within the STK toolkit. The resulting J2000 orbital
elements for the ISS used were:
Time (UTCG)………………………………………………………………………………3 Dec 2002 05:17:13.00
Semi-major Axis (km)………………………………………………………6774.904955
Eccentricity……………………………………………………………………………0.000329
Inclination (deg)………………………………………………………………51.620
RAAN (deg)…………………………………………………………………………………284.228
Arg of Perigee (deg)………………………………………………………235.096
Mean Anomaly (deg)……………………………………………………………330.712

Information extracted from STK for the ISS with the above orbital elements was:
Time(UTCG)…………………………………………………………………………………3 Dec 2002 05:17:13.00
Latitude (deg North)………………………………………………………-20.064
Longitude (deg East)………………………………………………………-30.214
Altitude (km)…………………………………………………………………………397.323361
Spacecraft just East off the coast of South America.

Results from the SEE using the J2000 orbit elements above were:
Spacecraft appears in approximately the same place as in the STK model.
Estimated Latitude (deg North) = -20 +/- 1.
Estimated Longitude (deg East) = -30 +/- 1

The latitude and longitude grid within the SEE has a resolution of 10 degrees between
lines, therefore the estimated accuracy of measurements (done visually) was +/- 1 degree.
The SEE currently doesn't contain a routine to report sub-object point latitude and
longitude.

Additionally, the Moon position at time zero is given within the STK model to be:
Time (UTCG)……………………………………………………………………………3 Dec 2002 05:17:13.00
Latitude (deg North)……………………………………………………-18.092
Longitude (deg East)……………………………………………………82.696
Altitude (km)………………………………………………………………………356475.066483

Results from the SEE for the Moon position at time zero were:
Time (UTCG)……………………………………………………………………………3 Dec 2002 05:17:13.00
Latitude (deg North)……………………………………………………___________
Longitude (deg East)……………………………………………………___________
Altitude (km)………………………………………………………………………___________

SEE Developer Guide

66

5.2 Test Case 2

Objective:

Estimate the accuracy of placement of the continental map and latitude/longitude grid on
the Earth sphere relative to an external reference point, and relative to each other.

Important notes about latitude and longitude estimations within SEE:

The accuracy of the estimation in latitude and longitude is limited by the accuracy of two
separate steps that have been used to position the continents and lat-long grid on the
Earth at a reference time:

1. How accurately the continental texture map features line up with a reference line
(such as a line connecting the Earth and Sun) at a specific date and specific time
as compared to a reference measurement. Checks have been performed to test the
current alignment, and the results are summarized below.

2. How accurately the lat-long grid is located relative to the texture map of the
continents that is used , i.e. how well the 0 degree longitude line aligns with the
apparent position of Greenwich, England, and how well the 0 degree latitude line
aligns with an appropriate feature on the continents. This is dependent on the
detail of the grid (number of pixels wide each lat-long line consists of) and the
accuracy in estimation of the approximate location of the reference points
(Greenwich, etc.) on the continent texture map.

The lat-long grid was aligned visually by D. Murphy and D. Cornelius on top of the Earth
texture map being used by the SEE on 12/5/2002. A new Earth texture map with lat-long
grid included was then created. This new texture map was used to make the estimations
in lat-long that are quoted for the test cases.

Accuracy of the lat-long to continent texture map alignment:

1. Within the SEE texture map, each lat-long line is 3 pixels wide. The assumption
was made that the middle pixel was the center of the line, leading to a line
placement accuracy of ½ pixel. The position of reference locations within the
continent texture map was estimated to be within 1 pixel. The texture map of the
entire globe consists of a picture that is 1024 pixels wide and 512 pixels tall, a
total placement error of +/- 1.5 pixels, or 0.53 degrees in both longitude and
latitude.

Accuracy of the placement of the texture map on the Earth sphere relative to a reference
object:

The sub-solar point on the Earth for various dates was used to estimate the accuracy of
the rotational alignment of the Earth with a reference object. Multiple dates were
selected between 1 Jan 1980 and 1 Jan 2040. Comparison of the time of prime meridian
alignment with the sub-solar point was made between the SEE and STK. Results are
summarized in Table 1 below.

SEE Developer Guide

67

Table 1. Estimated time of Sub-Solar Point Alignment with the Prime Meridian for SEE
versus STK.

SEE STK

Date
Time of Prime
Meridian
Alignment with
Sub-solar Point
(hh:mm:ss UT) *

Latitude of Su-
solar Point,
(degrees North)
**

Time of Prime
Meridian
Alignment with
Sub-solar Point
(hh:mm:ss UT)

Latitude of Su-
solar Point,
(degrees North)

Difference,
SEE - STK
(seconds)

1 Jan 1980 12:04:48 -23 12:03:18 - 23.05 90
1 Jan 1990 12:04:36 -23 12:03:33 -23.00 63
1 Jan 2000 12:04:08 -23 12:03:18 -23.02 50

30 June 2000 12:04:29 23 12:03:43 23.13 46
1 Jan 2001 12:04:15 -23 12:03:41 -22.97 34
1 Jan 2010 12:03:48 -23 12:03:34 -22.99 14
1 Jan 2020 12:03:10 -23 12:03:21 -23.02 -11
1 Jan 2040 12:02:21 -23 12:03:22 -23.01 -61

* Estimated error in time of sub-solar point alignment with Prime Meridian was ± 30 seconds, or ± 0.125
degrees longitude (based on a sidereal day of 23h 56 m 4s).
** Estimation of the sub-solar latitude within the SEE could only be made to ± 1 degree.

1. Sub-solar alignment with the equatorial plane for the year 2000. The time of the

year for which the sun was aligned with the true of date vernal equinox for the
year 2000 was also estimated. This time occurs when the sun crosses the
equatorial plane traveling in a northward direction.

a. SEE
i. Time of zero latitude for the sub-solar point was estimated to be 20

March 2000 17:00:00, at about 73 degrees west longitude.
ii. Due to the slow motion of the sun in the north-south direction

(caused by Earth motion about the Sun), there is a large time of
occurrence error on this number. For ~1/3 of a line width
movement of the sub-solar point (the approximate width of the
texture map equator line center pixel), the error estimation in this
time estimate is +/- 10 hours, or +/- 150 degrees longitude.

iii. At the apparent time of the equatorial crossing for the SEE model
(20 March 2000 17:00:00), the STK model indicated a sub-solar
latitude of only 0.16 degrees, which could be used as a basis for
the error in estimation of object latitude within the SEE.

b. STK
i. Time of zero latitude for the sub-solar point was extracted to be 20

March 2000 07:27:00.00, at a longitude of 70.11 degrees.
ii. A +/- 10 hour window in the STK data indicates a north-south sub-

solar point movement of only +/- 0.165 degrees.

SEE Developer Guide

68

5.3 Test Case 3:

Objective:

The goal of this series of tests was to estimate the accuracy of the position of the primary
planets and the Earth Moon, relative to a well respected planetary ephemeris data source.
The data source chosen for comparison was the JPL Horizons website, which reports out
ephemeris data for solar system objects up to 2040 AD (depending on the object/body,
ephemeris data may only be available through ~2025). The JPL ephemerides are based
upon numerical integration techniques that calculate the position and velocity of objects
due to multi-body perturbations.

Comparison was performed by extracting the position and velocity of each object of
interest, relative to its primary central body, from the SEE and comparing the results to
values obtained from the Horizons website. For each of the primary planets (Mercury
through Pluto), this meant differencing the JPL and SEE position data relative to the
center of the Sun. For the Earth Moon, this meant differencing the Moon position
relative to the center of the Earth.

Four plots of the resulting data are presented for each planet or moon. In the first two
plots, the absolute difference in position between the JPL and SEE data is shown in km,
and as a percentage of the orbit semi-major axis. The second two plots show the
difference in velocity between JPL and SEE for the object, both in km/s and as a percent
of the average object speed.

Plots showing the position and velocity comparisons of the SEE with Horizons data are
provided in Figures 22 through 37.

SEE Developer Guide

69

Earth

Figure 21. Comparison of Earth Position from JPL Horizons and SEE for the years 2000-2040

Figure 22. Comparison of Earth Velocity from JPL Horizons and SEE for the years 2000-2040

SEE Developer Guide

70

Earth Moon

Figure 23: Comparison of Moon Position from JPL Horizons and SEE for the years 2000-2040

Figure 24: Comparison of Moon Velocity from JPL Horizons and SEE for the years 2000-2040

SEE Developer Guide

71

Mercury

Figure 25: Comparison of Mercury Position from JPL Horizons and SEE for the years 2000-2040

Figure 26: Comparison of Mercury Velocity from JPL Horizons and SEE for the years 2000-2040

SEE Developer Guide

72

Venus

 Figure 27: Comparison of Venus Position from JPL Horizons and SEE for the years 2000-2040

Figure 28: Comparison of Venus Velocity from JPL Horizons and SEE for the years 2000-2040

SEE Developer Guide

73

Mars

Figure 29: Comparison of Mars Position from JPL Horizons and SEE for the years 2000-2040

Figure 30: Comparison of Mars Velocity from JPL Horizons and SEE for the years 2000-2040

SEE Developer Guide

74

Jupiter
Note: JPL Horizons data not available for Jupiter past 31 December 2024 00:00.00.

Figure 31: Comparison of Jupiter Position from JPL Horizons and SEE for the years 2000-2025

Figure 32: Comparison of Jupiter Velocity from JPL Horizons and SEE for the years 2000-2025

SEE Developer Guide

75

Saturn
Note: JPL Horizons data not available for Saturn past 16 January 2025 00:00.00.

Figure 33: Comparison of Saturn Position from JPL Horizons and SEE for the years 2000-2025

Figure 34: Comparison of Saturn Velocity from JPL Horizons and SEE for the years 2000-2025

SEE Developer Guide

76

Uranus
Note: JPL Horizons data not available for Uranus past 4 January 2025 00:00.00.

Figure 35: Comparison of Uranus Position from JPL Horizons and SEE for the years 2000-2025

Figure 36: Comparison of Uranus Velocity from JPL Horizons and SEE for the years 2000-2025

SEE Developer Guide

77

Neptune

Figure 37: Comparison of Neptune Position from JPL Horizons and SEE for the years 2000-2040

Figure 38: Comparison of Neptune Velocity from JPL Horizons and SEE for the years 2000-2040

SEE Developer Guide

78

Pluto

Figure 39: Comparison of Pluto Position from JPL Horizons and SEE for the years 2000-2040

Figure 40: Comparison of Pluto Velocity from JPL Horizons and SEE for the years 2000-2040

SEE Developer Guide

79

Discussion:

Instructions for Obtaining JPL Horizons Ephemeris Data:

The process for obtaining the desired ephemeris data from the JPL Horizons system is
fairly straightforward, and well described in the Horizons User's manual, located at
'http://ssd.jpl.nasa.gov/horizons_doc.html'. A brief version of the process is documented
here to facilitate a quick update of the ephemeris data, if necessary.

Although there are three methods for accessing data in the Horizons database (telnet,
WWW, and email), the easiest and most thorough (as far as amount of data available)
was determined to be the telnet method, described below. The WWW interface has
limitations that make it unusable for obtaining the data necessary for generation of the
comparison plots in this report. The data obtained for these plots was the Cartesian
coordinates of the center of each body relative to the Sun, and reported in the J2000
coordinate frame. At any point in the Horizons system help can be obtained by typing '?'
(or '?!' for extended help).

To obtain different or updated Horizon's data:

1. Open a browser window, and go the Horizons Website URL:
'http://ssd.jpl.nasa.gov/horizons.html'.

2. Click on the telnet link at the top of the page. This should open a telnet window
automatically within MS Windows. If this fails, manually open a telnet session
with 'telnet ssd.jpl.nasa.gov 6775'. This should anonymously log into the
Horizon's system, and result in a 'Horizons>' system prompt.

3. Enter the object number or name of the object for which position and velocity
information is desired. Each object has a specific number assigned to it, for
example, the planet Mercury is ID 199, while the Mercury barycenter is ID 1. A
search is possible by using an asterisk (*) as a wildcard in the name of the planet
desired.

4. Once the object of interest is selected, a summary of the object information
(object gravitational constant, diameter, etc.) will be displayed. At this point, you
can select to have the information emailed to you, select to retrieve it via FTP, or
continue to the object ephemeris.

5. Selecting 'Ephemeris' by typing 'E' will bring you to a prompt which allows you to
retrieve the observed position of the object from a location on the Earth's surface
(observe,'o'), the planet's orbital elements (elements, 'e'), or positional vector
(vectors, 'v'). Select 'v'.

6. The coordinate center for the positional information must be supplied. Type '500',
which corresponds to the Sun's body center location. This same information
could have been extracted from the Horizons system by typing '* @ sun', which
would report all body locations on/in the sun that are part of the database. Type
'?' for more help.

7. The next selection is to define the reference plane for the data. The three
selections are 'frame', which is the Earth's mean equator and equinox of the

SEE Developer Guide

80

reference Epoch, 'body', which is the selected body's equator and node of date, or
'eclip', which is the mean ecliptic and equinox of the reference epoch. Select
'eclip'.

8. Next, the starting and ending dates for the desired data need to be entered in the
format indicated.

9. The output interval for the desired data also needs to be specified. The
comparison plots were done on an interval of 5 days, or '5d'.

10. The output table default values for coordinate frame, light travel time corrections,
units of distance and time measure, output format, output type , and header labels
are displayed. If the user desires to use the indicated quantities, then a 'y' or
carriage return will accept the values and continue to the next step.

a. Make sure that for these comparisons that the Ref. Frame = ICRF/J2000,
Corrections = NONE, Units = km-s, CSV format = yes, table format = 03,
and vector label = yes.

11. The requested data is now generated and displayed one screen at a time. When
done inspecting the data to make sure that it is the information desired, type 'q' to
skip the rest of the display.

12. The data just displayed can now be retrieved through FTP, Kermit, or Mail
(email). Method of retrieval is up to the user, and directions for retrieval are
given for each method selected.

13. Selecting 'Again' or 'A' will keep the same body of interest and allow the user to
select more information for retrieval (such as orbital elements). It is equivalent to
starting the above process at step 5.

14. Selecting 'New Case' or 'N' will put the user back at the original Horizon's prompt,
allowing them to select a new body of interest.

SEE Developer Guide

81

6 ABBREVIATIONS AND ACRONYMS

API Application Programming Interface
CAPS Comet and Asteroid Protection System
DAC Design Analysis Cycle
DDEX Dynamics Data Extractor
ISS International Space Station
JSC Johnson Space Center
LaRC Langley Research Center
RASC Revolutionary Aerospace Systems Concepts
SEE Synergistic Engineering Environment
SEMDA Systems Engineering, Modeling and Data Analysis
STL Stereolithography
VIPER Vehicle Integrated Performance and Resources
VRML Virtual Reality Modeling Language

SEE Developer Guide

82

7 NOTES

1. The SEE public home page http://centauri.larc.nasa.gov/see contains examples of
visualizations created with the SEE software. These include the evaluation of
station contingency maneuvers planned for the event of a dual failure of the
primary and redundant Plasma Contactor Units, a review of the station flight
attitude using the playback of actual ISS telemetry streams, and an analysis of the
data-taking opportunities of the SAGE III experiment (an externally mounted
payload that requires a line-of-sight to the Sun at periods near dusk and dawn.)

2. The distinction made here between internal and external programs is based on

whether the code is compiled into the SEE software itself, or runs as a separate
executable. Examples of external programs used for Build I are the Space Station
Rigid Body Dynamics Simulator (SSRMBS) developed at JSC, and DOCKSIM, a
vehicle docking simulation developed at Langley Research Center.

3. In Build I, shared memory and TCP/IP packets were used to communicate signals

from the GUI to the main SEE process.

4. Since the QT timer is already allowing for the processing of user inputs before
allowing the event loop to proceed , an explicit respond phase may prove to be
unnecessary.

5. The joint location information needed by the visualization application to properly

place the station rigid bodies is not present in the SEMDA model file. The I-
DEAS application is used to add this data after the models are received from the
SEMDA lab but before the model file is exported to an ISS SEE compatible
format by the DDEX program.

http://centauri.larc.nasa.gov/see

SEE Developer Guide

8 APPENDIX A: SEE DIRECTORY STRUCTURE

READ ONLY DIRECTORIES:

 $SEE_HOME

 data docs exe_win32
 exe_irix
 exe_linux

s

user and
developer
document-
ation

platform
dependant
executable
codes

The se
source
a direc
this on
initialization
data, model
geometry,
textures,
images and
icons
83

ource_code

 see ddex arcdsee pqp qwt designer_plugins

e source codes. All
s should be placed in
tory one level below
e. Other sources for separate executables used by the SEE:

ddex - CAD conversion tool
arcdsee - NASA FORTRAN codes for ARCD (SEE version)
pqp - PQP collision detection libraries
qwt - Plotting extension for QT
designer_plugins – QT GUI designer plugins for custom widgets

SEE Developer Guide

84

Appendix A: SEE Directory Structure (continued)

USER (write-able) DIRECTORIES:

$SEE_USER

 images object_lib missions working

Screen
snapshots
stored here.

Custom parts,
crafts,
geometry, and
other objects
exported or
imported by the
user

Saved missions. Temporary
storage area for
files needed to
support the
currently loaded
mission.

SEE Developer Guide

85

9 APPENDIX B: ANNOTED DDEX FILE

This annotated example of a configuration (.ddex file) corresponds to Stage 5A of the
DAC 8 assembly sequence.

SEE Developer Guide

86

SEE Developer Guide

87

	1	INTRODUCTION	6
	Figure 1: SEE Event Loop	15
	INTRODUCTION
	Identification of Document
	Scope of Document
	Purpose and Objectives of Document
	Document Status and Schedule
	Document Organization

	RELATED DOCUMENTATION
	Applicable Documents
	Information Documents
	On-Line Resources

	MOTIVATION AND GOALS
	Background
	SEE Build II
	Requirements

	ARCHITECTURAL DESIGN DESCRIPTION
	Tools
	Gizmo 3D
	QT
	Functional Decomposition
	The Event Loop
	SEE Objects
	Hierarchies
	Solar System Objects
	Dynamics Models and Paths
	Dynamics Model Class: KeplerBody
	Dynamics Model Class: KeplerNewton
	Dynamics Model Class: TleSgp4
	Path Rendering

	The Orrery
	Dynamics Model Class: Moon

	Crafts
	Inertia Calculations in the SEE
	Joint Models
	Visiting Vehicles
	Collision Detection
	Cameras, Rendering Windows, and Navigation
	The Simulation Time System
	Building the Mission
	Bookmarks
	Analysis Tools
	Area Report

	Jet Plume Visualization
	Plotting
	Macros
	Movie Capture
	Online Help
	SEE FILE SYSTEM

	VERIFICATION
	Test Case 1
	Test Case 2
	Test Case 3:

	ABBREVIATIONS AND ACRONYMS
	NOTES
	APPENDIX A: SEE DIRECTORY STRUCTURE
	APPENDIX B: ANNOTED DDEX FILE

